1.如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)
(1)求证:E点在y轴上;
(2)如果有一抛物线经过A,E,C三点,求此抛物线方程.
(3)如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.
2. 已知:如图,在直线坐标系中,以点M(1,0)为圆心、直径AC为2√2的圆与y轴交于A、D两点.
(1)求点A的坐标;
(2)设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M的切线?并对你的结论加以证明;
(3)连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若S1/S2=h/4,抛物线y=ax²+bx+c经过B、M两点,且它的顶点到x轴的距离为h,求这条抛物线的解析式.
精彩评论