列方程解答应用题的步骤

◆ 弄清题意,确定未知数并用x表示

◆ 找出题中的数量之间的相等关系

◆ 列方程,解方程

◆ 检查或验算,写出答案

列方程解应用题的方法

综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

列方程解应用题的范围

★ 一般应用题

★ 和倍、差倍问题

★ 几何形体的周长、面积、体积计算

★ 分数、百分数应用题

★ 比和比例应用题

常见的一般应用题

1.以总量为等量关系建立方程

例1:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?

解:设快车小时行X千米

2.以总量为等量关系建立方程

例2:甲、乙两个粮仓一共有粮6800包,甲是乙的3倍,两仓各有多少包?

解:设乙仓有粮X包,那么甲仓有粮3X包

甲粮仓的包数+乙粮仓的包数=总共的包数

X+3X=6800

4X=6800

X=1700

3X=3×1700=5100

检验:1700+5100=6800包(甲乙两仓总共的包数)或5100÷1700=3(甲仓是乙仓的3倍)

答:甲原有粮5100包,乙原有粮1700包。

3.以相差数为等量关系建立方程

例3:化肥厂三月份用水420吨,四月份用水380吨,四月份比三月份节约水费60元,这两个月各付水费多少元?

解:设每吨水费X元

三月份的水费一四月份的水费=节约的水费

420X一380X=60

40X=60 X=1.5

三月份付水费1.5×420=630(元)

四月份付水费1.5×380=570(元)

答:三月份付水费630元,四月份付水费570元。

4.以题中的等量为等量关系建立方程

例4:有两桶油,甲桶油重量是乙桶油的2倍,现在从甲桶中取出25.8千克,从乙桶中取出5.2千克。剩下的两桶油重量相等,两桶油原来各有多少千克?

解:设乙桶油为X千克,那么甲桶油为2X千克

甲桶剩下的油=乙桶剩下的油

2X一25.8=X一5.2

2X一X=25.8一5.2

X=20.6

2X=20.6×2=41.2

答:甲桶油重41.2千克,乙桶油重20.6千克

5.以较大的量或几倍数为等量关系建立方程

例5:两筐苹果,每筐的个数相等,从甲筐卖出150个,从乙筐卖出194个后,剩下的苹果甲筐是乙筐的3倍,原来每筐有多少个?

解:设原来每筐X个

甲筐剩下的=乙筐剩下的3倍

X一150=(X一194)×3

X一150=3X一582

2X=432

X=216

答:原来每筐有216个