角平分线具有两条非常重要的性质:一是对称性;二是角平分线上的点到角两边的距离相等。
对于有角平分线的辅助线的作法,一般有四种:
①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边);③做角平分线的垂线,与角两边构造等腰三角形;④过角平分线上的点做边的平行线。
方法一、在证明线段的和差倍分问题中,常用到的方法是延长法或截取法来证明,以此来构造三角形全等,
延长短的线段,或在长的线段上截取一部分,使之等于短的线段。但无论延长,还是截取都要证明线段的相等。
延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所要证明的目的。
例2中,用到了角平分线,用到了做垂直,利用三线合一证明边相等,利用SAS来证明三角形全等。
此题的证明,也可以在AB上截取AE=AC,先证明△ADE≌△ADC,再利用AB=2AC,得出E是AB的中点,再利用三线合一证明DE⊥AB,所以DC⊥AC.
课后专项练习一,就是利用延长或者截取法,来证明的。
题目不难,非常基础,请同学们,认真仿照例题,认真推敲,加强练习。
方法二、角平分线上的点向角两边做垂线。通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;
其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。
一般来说,出现角平分线,做双垂直,都是非常通用的方法。
要么过角平线上的点做角两边的垂直,要么做角平分线的垂直交两边,都是必出三角形全等。
方法三,过角平分线上的一点,做角平分线的垂线,必然交于角的两边,构造出等腰三角形。这个方法,在很多题型中,非常实用。
专项练习三,有两个题,需要自行画图。只要我们一个专题一个专题的突破,把基础扎实起来,那么初中几何还难吗?初中数学还难吗?
方法四、过角平分想上一点,做角的另一边的平行线。
因为角平分线有两角相等,平行线则有内错角相等,则必然出现角相等,得等腰三角形。
精彩评论