如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,4)两点,与x轴交于另一点B,
(1)求抛物线的解析式;
(2)求P在第一象限的抛物线上,P点的横坐标为t,过点P向x轴做垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式并求出m的最大值;
(3)在(2)的条件下,抛物线上一点D的纵坐标为m的最大值,连接BD,在抛物线是否存在点E(不与点A,B,C重合)使得∠DBE=45°?若不存在.请说明理由;若存在请求E点的坐标.
考点分析:
二次函数综合题.
题干分析:
(1)把点A、B的坐标代入抛物线解析式,解关于b、c的方程组求出b、c的值即可得到抛物线解析式,令y=0,解关于x的一元二次方程即可得到点C的坐标;
(2)根据抛物线的解析式y=﹣x2+3x+4,令y=0求得点B的坐标为(4.0),设直线BC的解析式为y=kx+a
把点B、C的坐标代入直线BC的解析式为y=kx+a,解关于k、a的方程组求出k、a的值,所以直线BC的解析式为y=﹣x+4,设P点的坐标为(t,﹣t2+3t+4),则Q点的坐标为(t,﹣t+4),所以m=(﹣t2+3t+4)﹣(﹣t+4),整理得m=﹣(t﹣2)2+4,根据关于m、t的二次函数即可求得.
(3)根据m的最大值是4,代入y=﹣x2+3x+4,可求得D点的坐标(3,4),过D点作DH⊥BC,过E点作EF⊥x轴,由OC=OB=4得△DCB为等腰直角三角形,从而得出△CDH为等腰直角三角形,通过等腰直角三角形求得CN、BH的值,然后根据三角形相似求得EF、BF的关系,设出E点的坐标,然后代入y=﹣x2+3x+4即可求得.
精彩评论