如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).

(1)求抛物线的解析式;

(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);

(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.

中考数学,专题复习85:函数动点有关的综合题型


中考数学,专题复习85:函数动点有关的综合题型


中考数学,专题复习85:函数动点有关的综合题型


考点分析:

二次函数综合题.

题干分析:

(1)设抛物线的解析式为y=a(x+1)(x﹣4),然后将(0,﹣2)代入解析式即可求出a的值;

(2)当△PBH与△AOC相似时,△PBH是直角三角形,由OH/OA=OB/OH可知∠AHB=90°,所以求出直线AH的解析式后,联立一次函数与二次函数的解析式后即可求出P的坐标;

(3)设M的坐标为(m,0),由∠BME=∠BDC可知∠EMC=∠MBD,所以△NCM∽△MDB,利用对应边的比相等即可得出CN与m的函数关系式,利用二次函数的性质即可求出m=3/2时,CN有最大值,然后再证明△EMB∽△BDM,即可求出E的坐标.