【知识点拨】
一.余角、补角、对顶角
1,余角:如果两个角的和是直角,那么称这两个角互为余角.
2,补角:如果两个角的和是平角,那么称这两个角互为补角.
3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线.4,互为余角的有关性质:
①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;
②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.
5,互为补角的有关性质:
① 若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.
②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180 °,则∠B=∠C.
6,对顶角的性质:对顶角相等.
二.同位角、内错角、同旁内角的认识及平行线的性质
7,同一平面内两条直线的位置关系是:相交或平行.
8,“三线八角”的识别:
三线八角指的是两条直线被第三条直线所截而成的八个角.
正确认识这八个角要抓住:
同位角位置相同,即“同旁”和“同位”;内错角要抓住“内 部,两旁”;同旁内角要抓住“内部、同旁”.
三.平行线的性质与判定
9,平行线的定义:在同一平面内,不相交的两条直线是平行线.
10,平行公理:过直线外一点有且只有一条直线和已知直线平行.
11,两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.
12,如果两条直线都与第三条直线平行,那么这两条直线互相平行.
13,平行线的判定定理:
(1) 同位角相等,两直线平行;
(2) 内错角相等,两直线平行;
(3) 同旁内角互补,两直线平行。
14,平行线的性质定理:
(1) 两直线平行,同位角相等;
(2) 两直线平行,内错角相等;
(3) 两直线平行,同旁内角互补。
【错解示例】
精彩评论