热点一 计数原理与排列与组合
某校的A、B、C、D四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B不选修同一门课,则不同的选法有( )
A. 36种 B. 72种 C. 30种 D. 66种
点睛:排列、组合综合应用问题的常见解法:①特殊元素(特殊位置)优先安排法;②合理分类与准确分步;③排列、组合混合问题先选后排法;④相邻问题捆绑法;⑤不相邻问题插空法;⑥定序问题倍缩法;⑦多排问题一排法;⑧“小集团”问题先整体后局部法;⑨构造模型法;⑩正难则反、等价转化法.
在计算排列组合问题时,可能会遇到“分组”问题,要特别注意是平均分组还是不平均分组.可从排列与组合的关系出发,用类比的方法去理解分组问题.
【考向预测】1.两个计数原理是解决排列、组合问题的基本方法,同时又能独立地解决一些简单的计数问题,通常与排列组合问题或概率计算问题综合考查.
2.排列组合问题往往以实际问题为背景,考查排列数、组合数,同时考查分类讨论的思想及解决问题的能力.除了以选择、填空的形式考查,也往往在解答题中与概率相结合进行考查.
热点二 二项式定理
点睛:
(1)对于二项式系数问题,应注意以下几点:
①求二项式所有项的系数和,可采用“特殊值取代法”,通常令字母变量的值为1;
②关于组合恒等式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;[来源:学_科_网]
③证明不等式时,应注意运用放缩法.
(2)有些三项展开式问题可以变形为二项式问题加以解决;有时也可以通过组合解决,但要注意分类清楚,不重不漏.
(3)对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.
(4)在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.
(5)在应用通项公式时,要注意公式中,它表示二项展开式的任意项,只要n与r确定,该项就随之确定;a,b的指数和为n且a,b不能随便颠倒位置;
【考向预测】二项式定理中热点是通项公式的应用,利用通项公式求特定项或特定的项的系数,或已知某项,求指数n,求参数的值等.
热点三 古典概型
点睛:古典概型中基本事件的探求方法
(1)枚举法:适合给定的基本事件个数较少且易一一列举出的.[来源:学科网ZXXK]
(2)树状图法:适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x,y)可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2)(2,1)相同.
(3)排列组合法:在求一些较复杂的基本事件的个数时,可利用排列或组合的知识.
【考向预测】概率是高考热点之一,特别是古典概型,以互斥事件、对立事件的概率为主.客观题与大题都有可能考查,在大题中更加注重实际背景,考查分析、推理能力.
精彩评论