反比例函数与几何综合的处理思路
1. 从关键点入手.通过关键点坐标和横平竖直线段长的互相转化,可将函数特征与几何特征综合在一起进行研究.
2. 对函数特征和几何特征进行转化、组合,列方程求解.若借助反比例函数模型,能快速将函数特征转化为几何特征.
与反比例函数相关的几个模型,在解题时可以考虑调用.
反比例与面积问题
线段等量关系
平行关系
证明1
由反比例函数的几何性质有SΔOAD=SΔOCB
SΔOCD=SOBCD-SΔOBC=SOBCD-SOAD=S梯形ABCD
证明2
辅助线是关键
分别过B、C两点,作x、y轴垂线,连接BE和CF
因为BF平行于Y轴,所以SΔBEF=SΔBFO(同底等高)
同理CE平行于X轴,所以SΔEFC=SΔECO(同底等高)
故SΔEFB=SΔEFC 得到 EF平行于AD
四边形ABFE和CDFE都为平行四边形(两组对边平行)
所以AB=CD
一样的证明思路
过A、D分别作XY轴的垂线,连接AF、DE
SΔDFE=SΔDFO SΔAFE=SΔAEO (同底等高)
所以SΔEFA=SΔEFD 所以得到EF平行于AD
四边形EFBA和EFDC都是平行四边形
所以AB=CD
证明3
同理可得
同样运用同底等高可以证明,相信你也可以的!
精彩评论