相似三角形三点定形证明和全等三角形辅助线证明
方法一:直接寻求相似三角形
只要根据题目给定的条件寻找出线段成比例,或者角相等利用判定定理直接找出来.
例1、如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD∽△EGC ∽△EAB。
分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。本例除公共角∠G外,由BC∥AD可得∠1=∠2,所以△AGD∽△EGC。再∠1=∠2(对顶角),由AB∥DG可得∠4=∠G,所以△EGC∽△EAB。
评注:(1)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”。(2)找到两个三角形中有两对角对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。
精彩评论