这种题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。

其计算方法是:

当一次有余数,另一次不足时: 每份数=(余数+不足数)÷两次每份数的

当两次都有余数时: 总份数=(较大余数-较小数)÷两次每份数的差

当两次都不足时: 总份数=(较大不足数-较小不足数)÷两次每份数的差

经典例题1

一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。求这个小组有多少人?一共有多少棵树苗?

分析:已知如果每人栽3棵,还剩下15棵树苗,也就是说还有15棵树苗没有栽上,树苗余下了;又知如果每人栽5棵,就缺少9棵树苗,这就是说,树苗不够了。

按照第一种方案去栽,树苗余下了,若按照第二种方案去栽,树苗不足了。一个是余下一个是不足,这两个方案之间相差多少棵呢?相差(15+9=)24棵,也就是说,如果按照第二种方案去栽的话,可以比第一种方案多栽24棵树。

为什么能多栽24棵树呢?因为每个人多栽(5-3=)2棵。由于每一个人多栽2棵树,一共多栽24棵树,即“2棵树”对应于“1个人”。这样,小组的人数可以求得。随之,树苗的棵数也可以求得。

计算:

小组的人数:(15+9)÷(5-3)=24÷2=12(人)

树苗的棵数: 3×12+15=51(棵)

答:这个小组有12人,一共有51棵树苗。

经典例题2

悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。求从家出发需要走多少分钟才能准时到校?悦悦的家离学校有多少米?

分析:已知如果悦悦每分钟走45米,则迟到4分钟,这就是说,按照规定到校的时刻来说,还距离学校有(45×4=)180米的路;又知如果每分钟走75米,则可以提前4分钟到校,这就是说,到校之后还可以多走出(75×4=)300米的路。

一个慢一个快,在同样时间之内,速度快要比速度慢多走出(180+300=)480米的路。又知每分钟多走(75-45=)30米。总之,由于每分钟多走30米,一共多走出480米;因此,从家到学校所需要的时间就可以求出来了,随之,悦悦的家距离学校的米数也可以求出来了。

计算:

准时到校需要多少分钟?

(45×4+75×4)÷(75-45)=480÷30=16(分钟)

悦悦家与学校距离多少米?

45×16+45×4=720+180=900(米)

答:准时到校需要16分钟,悦悦家离学校900米。

经典例题3

晶晶读一本故事书,原计划若干天读完。如果每天读11页,可以比原计划提前2天读完;如果每天读13页,可以比原计划提前4天读完。求原计划多少天读完?这本书共有多少页?

分析:已知如果每天读11页,可以比原计划提前2天读完,这就是说,如果继续读2天的话,还可以多读(11×2=)22页;又知如果每天读13页,可以比原计划提前4天读完,这就是说,如果继续读4天的话,还可以多读(13×4=)52页。两种情况,虽然都可以多读,但是它们之间有差别。

就是说,在一定的日期之内,第二种方法比第一种方法多读(52-22=)30页。为什么能多读30页呢?就是因为每天多读(13-11=)2页。由于每天多读2页,结果一共可以多读30页。这是多少天读的呢,问题不就解决了吗!

计算:

原计划多少天读完这本书?

(13×4-11×2)÷(13-11)=(52-22)÷2=30÷2=15(天)

这本书共有多少页?

11×(15-2)=11×13=143(页)

答:原计划15天读完,这本书共有143页。