巧妙求和(一)

一、方法思维

若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:"通项公式"和"项数公式"。

通项公式:第n项=首项+(项数-1)×公差

项数公式:项数=(末项-首项)÷公差+1

二、精讲精练

【例题1】 有一个数列:4,10,16,22.…,52.这个数列共有多少项?

【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?

【思路导航】这个等差数列的首项是3.公差是4,项数是100。要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼


【例题3】有这样一个数列:1.2.3.4,…,99,100。请求出这个数列所有项的和。

【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

1+2+3+…+99+100=(1+100)×100÷2=5050

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼


【例题4】求等差数列2,4,6,…,48,50的和。

【思路导航】这个数列是等差数列,我们可以用公式计算。

要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25

首项=2.末项=50,项数=25

等差数列的和=(2+50)×25÷2=650.

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼


【例题5】计算(2+4+6+…+100)-(1+3+5+…+99)

【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。

进一步分析还可以发现,这两个数列其实是把1 ~ 100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。

(2+4+6+…+100)-(1+3+5+…+99)

=(2-1)+(4-3)+(6-5)+…+(100-99)

=1+1+1+…+1

=50

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼