小学数学复习资料

常用的数量关系式

1、速度×时间=路程路程÷速度=时间路程÷时间=速度

2、单价×数量=总价总价÷单价=数量总价÷数量=单价

3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

4、加数+加数=和和-一个加数=另一个加数

5、被减数-减数=差被减数-差=减数差+减数=被减数

6、因数×因数=积积÷一个因数=另一个因数

6、被除数÷除数=商被除数÷商=除数商×除数=被除数

在有余数的除法中: (被除数-余数)÷除数=商

7、总数÷总份数=平均数

8、相遇问题

相遇路程=速度和×相遇时间

或相遇路程=快车速度×相遇时间+慢车速度×相遇时间

相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间

9、利息=本金×利率×时间

10、收入-支出=结余单产量×数量=总产量

量的计量

在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。

名数;数和单位名称合起来叫做名数。

单名数:只含有一种单位名称的名数叫单名数。

复名数:含有两种或两种以上单位名称的名数叫复名数。

×进率

高级单位的名数低级单位的名数

÷进率

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

面积单位换算

1平方千米=1000000平方米 1公顷=10000平方米 1平方千米=100公顷

1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

体积(容积)单位换算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

1立方分米=1升 1立方厘米=1毫升 1升=1000毫升

质量单位换算

1吨=1000 千克 1千克=1000克 1千克=1公斤

人民币单位换算

1元=10角 1角=10分 1元=100分

时间单位换算

1世纪=100年 1年=12月=4个季度大月(31天)有:18 月

小月(30天)的有:49 月

平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时

1时=60分 1分=60秒 1时=3600秒

运算定律

1. 加法交换律:

两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

2. 加法结合律:

三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

3. 乘法交换律:

两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4. 乘法结合律:

三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

5. 乘法分配律:

两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

6. 减法的性质:

从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

运算顺序

1. 小数四则运算的运算顺序和整数四则运算顺序相同。

2. 分数四则运算的运算顺序和整数四则运算顺序相同。

3. 没有括号的混合运算:

同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。

4. 有括号的混合运算:

先算小括号里面的,再算中括号里面的,最后算括号外面的。

5. 第一级运算: 加法和减法叫做第一级运算。

6. 第二级运算:乘法和除法叫做第二级运算。

应用题

简单应用题

简单应用题只需要一步计算就能求得答案的应用题。

简单应用题都是由两个己知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的,也就是说,都可以由已知条件经过一步计算直接求出答案。至于在不同的题目里用什么方法计算.则需要认真分析题中的数量关系(已知条件和问题的关系),然后根据四则运算意义,以及已知的是哪两个条件来确定。

复合应用题

复合应用题就是不能一步计算求得答案,而需要两步或者两步以上的计算才能求得答案的应用题。

一. 解答复合应用题分析方法一般有两种:

①分析法: 问题 →条件②综合法; 条件 → 问题

二.解答应用题-般步骤:

①弄清题意,找出题中已知条件和所求问题。

②分析题中数量关系,确定先算什么,再求什么,然后算什么。

③列式求得结果。 ④检验是否正确,写出答语。

三.解答方法:⑴分步列算式解答。⑵列综合算式解答。

列方程解应用题

列方程解应用题的一般步骤:

①弄清题意,找出题中已知条件和所求问题。②分析题意,找出题中等量关系式。

③用x表示未知数量,列出方程,解方程。④检验是否正确,写出答语 。

列方程解应用题的关键是找出题中的等量关系式。有的应用题,等量关系式很明显,直接可得到;有的应用题等量关系式不明显,要分析题意才能找出;有的应用题等量关系式隐藏,如周长公式、面积公式、体积公式不会出现在题目中,所以熟记学过所有的字母公式很重要。

和倍问题(差倍问题)

已知两个数量的和(或差)与它们的倍数关系,求这两个数量。关键找出1倍数量(或说单位1),画线段图表示题意。

相遇问题

重点理解关键词:同时相对(相向)而行速度和两地路程相遇

相遇问题基本数量关系式:两地距离=速度和×相遇时间

分数(或百分数)应用题

解答分数(或百分数)应用题的关键是分析题中含有分率的句子,找出单位“1” (标准量) 和比较量。基本数量关系: 分率=比较量÷标准量

比较量=标准量×比较量相对应的分率标准量=比较量÷比较量相对应的分率

注意:解答时最大的误区: 甲数比乙数多a%,那么乙数比甲数少a%.

小学数学几何公式表(理解记忆)

平面图形

图形名称字母的含义周长c 面积 s 正方形 a—边长 C=4a S=a2

长方形 a—长 b-宽 C=2(a+b) 或C=2a+2b S=ab

三角形 a---底边 h—a 边上的高 S= ah 或 S=ah÷2 或S=

梯形 S=(a+b)h/ a— 上底 b-下底h-高 S= (a+b)h或 S=(a+b)h÷2

圆 r-半径 C=πd=2πr r—半径 d-直径

π—圆周率 C=πd或C=2πr S=πr2

d= 或d=c÷ π r= 或r=c÷π÷2

圆环 R-外圆半径

S=π(R2-r2) r-内圆半径 R-外圆半径环=S外-S内=π(R2-r2)

立体图形

图形名称字母含义 S — 面积 V — 体积

正方体 a-棱长棱长和=12a S表=6a2 S底= a2

V= S底h 或 V=a3

长方体 a-长

S=2(ab+ac+bc) a-长 b-宽 h-高 S表=2(ab+ah+bh)( 两个底面)

S表ab+2ah+2bh(没盖)S表2ah+2bh(没底面)

V=abh或V=Sh 棱长和=(a+b+h)×4 圆柱 r- C=2 r --底面圆半径

d—底面直径C—底面周长 h-高 S底—底面积 S侧—侧面积

S表—表面积 S底=πr2 V=S底h=πr2hS 侧=Ch =2πr h=πd h

两个底面:S表=S侧+2S 底没盖:S表= S侧+S底 没有底面:S表= S侧

空心管 R-外圆半径 V=πh(R2-r2) r-底面内圆半径

R-底面外圆半径h-高 V管=V外-V内=(πR2-πr2 ) h=π(R2-r2) h

直圆锥 r-底半径

V=πr2h/3 h-高 r—底面半径 S—底面积 V= Sh 或 V= πr2h

比、正比例和反比例

1.比的意义:两个数相除又叫做这两个数的比.

比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。

2.比、分数与除法的关系: a:b= = a÷b (b≠0) 3.求比值和化简比的联系与区别:

意义方法结果

求比值比的前项除以比的后项所得的商叫做比值。①前项除以后项②前项和后项都乘或除以相同的数(0除外)一个数(整数、小数、分数)

化简比把两个数的比化成最简单的整数比一个最简比

最简比:前项和后项的最大公约数只有1的比叫最简比。

5.按比例分配的实际问题

6.正比例和反比例的区别与联系:

相同点不同点 特征关系式 正比例两种相关联的变化的量两种量中相对应的两个数的比的比值(也就是商)一定 = k(一定)

反比例两种量中相对应的两个数的积一定 x×y= k(一定)

7.图上距离和实际距离的比叫做这幅图的比例尺。 图上距离:实际距离=比例尺